Molecular diversity and characterization of nitrite reductase gene fragments (nirK and nirS) from nitrate- and uranium-contaminated groundwater

Tingfen Yan,1,2,3† Matthew W. Fields,1* Liyou Wu,1 Yuangang Zu,3 James M. Tiedje2 and Jizhong Zhou1,2†
1Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS-6038, Bldg. 1505, Oak Ridge, TN 37831–6036, USA.
2Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA.
3Open Research Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin 150040, P.R. China.

Summary

Nitrate-contaminated groundwater samples were analysed for nirK and nirS gene diversity. The samples differed with respect to nitrate, uranium, heavy metals, organic carbon content, pH and dissolved oxygen levels. A total of 958 nirK and 1162 nirS clones were screened by restriction fragment length polymorphism (RFLP) analysis: 48 and 143 distinct nirK and nirS clones, respectively, were obtained. A single dominant nirK restriction pattern was observed for all six samples and was 83% identical to the Hyphomicrobium zavarzini nirK gene. A dominant nirS pattern was observed for four of the samples, including the background sample, and was 95% identical to the nirS of Alcaligenes faecalis. Diversity indices for nirK and nirS sequences were not related to any single geochemical characteristic, but results suggested that the diversity of nirK genes was inversely proportional to the diversity of nirS. Principal component analysis (PCA) of the sites based on geochemistry grouped the samples by low, moderate and high nitrate but PCA of the unique operational taxonomic units (OTUs) distributions grouped the samples differently. Many of the sequences were not closely related to previously observed genes and some phylogenetically related sequences were obtained from similar samples. The results indicated that the contaminated groundwater contained novel nirK and nirS sequences, functional diversity of both genes changed in relation to the contaminant gradient, but the nirK and nirS functional diversity was affected differently.

Introduction

The reduction of nitrate to dinitrogen gas, denitrification, is part of the global nitrogen cycle and is primarily a bacterial respiratory process. Besides the importance in global nitrogen balance, more recent concerns have arisen as a result of nitrate- and nitrogen oxide-polluted groundwater, as well as the emergence of dinitrogen oxide as a potent greenhouse gas (Dickinson and Cicerone, 1986). Different anthropogenic processes can be a major source for nitrogen oxides, including agriculture, wastewater treatment and industry (Thiemens and Trogler, 1991; Zumft, 1997).

The products of partial nitrate reduction can inhibit bacterial growth and also be problematic in the reduction of mobile metal species, such as uranium (Tiedje, 1988; Zumft, 1992; Senko et al., 2002). To understand how biogeochemical processes affect microbial community structure and bioremediation, the U.S. Department of Energy’s (DOE) Natural and Accelerated Bioremediation Research (NABIR) program has established a Field Research Center (FRC) on the DOE Oak Ridge Reservation (http://www.esd.ornl.gov/nabirfrc/) in eastern Tennessee. The FRC is heavily contaminated with nitrate and heavy metals, and is a designated site for research associated with the NABIR program.

Dissimilatory nitrite reduction is catalysed by two types of nitrite reductases: the copper-containing nirK and the cytochrome cd, nirS gene products (Braker et al., 1998). Previous work has indicated that the nirK and nirS sequences are useful for understanding the composition of denitrifier communities (Braker et al., 1998; Hallin and Lindgren, 1999; Braker et al., 2000; Prieme et al., 2002). To investigate how nitrate and other contaminants can affect denitrifying communities, the diversity of nirK and nirS genes was determined for groundwater samples contaminated with varying levels of nitrate and heavy metals. Our results indicate that many of the nirK and nirS clones represent novel sequences and that the environmental conditions appear to have affected presumptive, denitrifying communities differently along a contaminant gradient. To our knowledge, this is the first assessment of nitrite...
reductase community structure and diversity from nitrate- and uranium-contaminated groundwater.

Results

Site characteristics

The chemical characteristics were significantly different among the six samples. Wells FW-005, -010 and -015 in Area 1 and 3 had low pH values, and background (FW-300), TPB-16 and FW-003 had circum neutral pH values (Table 1). All wells except background had nitrate levels over the drinking water standards of 10 p.p.m. or 0.16 mM (http://www.epa.gov/safewater/dwh/c-ioc/nitrates.html). The nitrate concentrations ranged from 0.02 mM (~1 p.p.m.) at the background site and 0.67 M (~42 000 p.p.m.) at FW-010. Samples from FW-005 and FW-015 had increased nitrate, low pH, and high uranium and heavy metals. TPB-16 and FW-300 samples had circum neutral pH, low heavy metals and low nitrate. Samples FW-010 and FW-003 had increased nitrate and low uranium, and low and circum neutral pH values respectively. The TOC (total organic carbon) levels were similar for FW-005, FW-015 and TPB-16 were approximately twofold above background. FW-003 and FW-010 had approximately threefold and sixfold more TOC than background. The substratum of the sampling sites was similar and consisted of shale with inner-embedded limestone that has been weathered to clay, silty saprolite (http://www.esd.ornl.gov/nabirfrc/). The flow was in a south-south-west direction from the source ponds towards FW-005, FW-010 and FW-015.

RFLP analysis of nirK gene fragments

All six samples yielded PCR products with the nirK-specific primer pairs and a total of 958 nirK clones were screened from the six sites. Rarefaction and regression analyses indicated that the majority of recovered diversity was sampled within 20 analysed clones for all the nirK libraries except TPB-16, which required approximately 40 clones (data not shown).

The same nirK restriction pattern was observed for all six wells as the dominant recovered clone (C01-03–6) accounted for 78% of the total nirK library and comprised 40–91% of the respective sample libraries (Fig. 1). The wells FW-300, TPB-16 and FW-015 each had approximately 25% unique RFLP patterns that were not observed in the other samples, but only 5% of the clones from wells FW-003, FW-005 and FW-010 had unique patterns. A total of nine restriction patterns were shared among the samples and the predominant pattern was the only RFLP pattern observed at all sites. A total of 48 operational taxonomic units (OTUs, i.e. unique patterns) were unique to the different samples.

The clone libraries from FW-003 and FW-005 displayed one predominant pattern and had low diversity. The other four samples displayed higher diversity and evenness (Table 2). Samples FW-300 and FW-010 had similar diversity, evenness and richness indices, even though FW-010 had 34 000-fold higher nitrate levels. The background sample had the highest similarity value with FW-015 (0.49) and the clone similarity of the three acidic sites ranged from 0.33 to 0.36 (Table 3).

RFLP analysis of nirS gene fragments

All six samples yielded PCR products with the nirS-specific primers and a total of 1162 nirS clones were screened from the six sites. Rarefaction and regression analyses indicated that the majority of diversity was sampled within 30 analysed clones from FW-300 and TPB-16, 40 clones for FW-015, 55 clones for FW-005 and FW-010, and 60 clones for FW-003 (data not shown). A single predominant OTU (s-10–4, clone Group 1) was obtained from wells FW-300, FW-005, FW-010 and FW-015 (Fig. 2), and the wells FW-003 and TPB-16 were predominated by different OTUs (clone Groups 5 and 10 respectively). The samples FW-300, FW-005 and FW-003 had between 40 and 60% OTUs which were not observed in the other samples, seven nirS patterns were observed in more than one sample and 40% of the entire library was unique to at least one groundwater sample. The diversity of nirS varied from well to well and FW-015 and TPB-16 had decreased diversity indices compared to FW-300 (Table 2). The samples, FW-003 and FW-005, displayed the highest nirS diversity, and also had the lowest nirK diversity. The FW-003 sample had the greatest diversity of both the nirK and nirS genes from all of the wells.

The nirS libraries from each site had little overlap and, except for the predominant patterns, most nirS clones were unique to the respective well. The background well shared the most nirS clones with wells FW-005 and FW-

Table 1. Geochemical data for the groundwater samples used for molecular analysis.

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>Nitrates (mM)</th>
<th>U (µM)</th>
<th>Ni (µM)</th>
<th>TOC (mM)</th>
<th>DO (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW-300</td>
<td>6.1</td>
<td>0.02</td>
<td>0.004</td>
<td>0.09</td>
<td>2.50</td>
<td>0.17</td>
</tr>
<tr>
<td>FW-005</td>
<td>6.0</td>
<td>17.0</td>
<td>0.042</td>
<td>0.26</td>
<td>8.30</td>
<td>0.03</td>
</tr>
<tr>
<td>FW-005</td>
<td>3.9</td>
<td>2.80</td>
<td>27.0</td>
<td>85.2</td>
<td>5.80</td>
<td>0.05</td>
</tr>
<tr>
<td>FW-010</td>
<td>3.5</td>
<td>67.7</td>
<td>0.71</td>
<td>307</td>
<td>14.6</td>
<td>0.05</td>
</tr>
<tr>
<td>FW-015</td>
<td>3.4</td>
<td>135</td>
<td>32.4</td>
<td>150</td>
<td>5.40</td>
<td>nd</td>
</tr>
<tr>
<td>TPB-16</td>
<td>6.3</td>
<td>0.50</td>
<td>4.62</td>
<td>ND</td>
<td>5.40</td>
<td>0.03</td>
</tr>
</tbody>
</table>

FW-300 is the background area spatially isolated from the contaminated sites. Nitrates, total organic carbon (TOC) and dissolved oxygen (DO) values are reported as mM, uranium (U) and nickel (Ni) as µM were determined by the FRC management team at Oak Ridge National Laboratory and the data are maintained at http://www.esd.ornl.gov/nabirfrc/. ND, not detected; nd, not determined.
010 and the similarity values were 0.25 and 0.20 respectively (Table 3). The samples FW-003 and TPB-16 each had a unique, predominant pattern, one of the lowest similarity values (Table 3), and the next most observed OTU was the dominant clone surveyed in the other wells (Fig. 2).

**Sequence analysis of nirK clones**

Partial sequences were determined for all clones having distinctive restriction patterns. When nirK sequences from representatives of the \(\alpha\)-, \(\beta\)- and \(\gamma\)-Proteobacteria were compared to the unique nirK clones (\(n = 48\)), many of the FRC sequences were more closely related to one another than to previously reported genes (Fig. 3). Only one clone, D05-015–127, had higher than 90% nucleotide identity with a known nirK gene (Bradyrhizobium japonicum, \(\alpha\)). The nirK sequence from Hyphomicrobium zavarzinii (\(\alpha\)) was the most closely related known sequence to almost half of the FRC nirK OTUs and approximately 60% of the
OTUs had 80–85% identity with known sequences from the α-Proteobacteria, H. zavarzinni, Rhizobium meliloti or Blastobacter denitrificans. The remaining unique OTUs had 70–78% nucleotide identity with the known nirK genes from H. zavarzinni or Blastobacter denitrificans.

The nirK clone Group 1 sequences in Cluster I were 98–99% identical, contained the predominant, recovered OTU from every site and had 81–83% sequence identity with the nirK from H. zavarzinni (Fig. 3). The clone Group 2, which contained seven sequences with 97–99% sequence identity, had 75% nucleotide identity with the H. zavarzinni nirK gene (Fig. 3). This group also contained the second most frequently recovered sequence from TPB-16 and was well represented by clones from TPB-16 and background (e.g. low nitrate, circum neutral pH). The unique sequences C05-015–113 and F04-015–43 were obtained from the similar sites, FW-005, FW-010, and FW-015, and were predominately (87%) recovered from the acidic sites (e.g. high contaminants). The clone Group 5 (Cluster II) contained the predominant sequences for samples FW-003, FW-005, FW-010, and FW-015, which account for over half of the entire library and had 95% identity with previously known genes, approximately 30% of the OTUs were 80–85% identical to previously known genes, and the remaining 25% were 70–80% identical to previously reported sequences (Fig. 4).

The nirS dendrogram could be divided into five clusters (I–V) and Cluster I contained a majority of the FRC clones as well as the predominant sequences for samples FW-300, -005, -010 and -015. The clone Group 1 in Cluster I accounted for over half of the entire library and had 95% identity with the nirS from Alcaligenes faecalis (β) and approximately 92% identity with the nirS of Psuedomonas stutzeri (γ). Clone Group 1 was dominated by recovered clones from low pH samples, whereas almost all recovered sequences in clone Group 2 were obtained from circum neutral pH samples. The nirS of Azospirillum brasilense clustered with clone Groups 3 and 4 with approximately 83% similarity for each group.

The clone Group 5 (Cluster II) contained the predominant, recovered clone from FW-003, which was only 75% identity with previously known genes, the identity values ranged from 59 to 100%. Almost 45% of the OTUs had ≥95% sequence identity with previously known genes, approximately 30% of the OTUs were 80–85% identical to previously known genes, and the remaining 25% were 70–80% identical to previously reported sequences (Fig. 4).

The nirS dendrogram could be divided into five clusters (I–V) and Cluster I contained a majority of the FRC clones as well as the predominant sequences for samples FW-300, -005, -010 and -015. The clone Group 1 in Cluster I accounted for over half of the entire library and had 95% identity with the nirS from Alcaligenes faecalis (β) and approximately 92% identity with the nirS of Psuedomonas stutzeri (γ). Clone Group 1 was dominated by recovered clones from low pH samples, whereas almost all recovered sequences in clone Group 2 were obtained from circum neutral pH samples. The nirS of Azospirillum brasilense clustered with clone Groups 3 and 4 with approximately 83% similarity for each group.

The clone Group 5 (Cluster II) contained the predominant, recovered clone from FW-003, which was only 75% identity with previously known genes, the identity values ranged from 59 to 100%. Almost 45% of the OTUs had ≥95% sequence identity with previously known genes, approximately 30% of the OTUs were 80–85% identical to previously known genes, and the remaining 25% were 70–80% identical to previously reported sequences (Fig. 4).

The nirS dendrogram could be divided into five clusters (I–V) and Cluster I contained a majority of the FRC clones as well as the predominant sequences for samples FW-300, -005, -010 and -015. The clone Group 1 in Cluster I accounted for over half of the entire library and had 95% identity with the nirS from Alcaligenes faecalis (β) and approximately 92% identity with the nirS of Psuedomonas stutzeri (γ). Clone Group 1 was dominated by recovered clones from low pH samples, whereas almost all recovered sequences in clone Group 2 were obtained from circum neutral pH samples. The nirS of Azospirillum brasilense clustered with clone Groups 3 and 4 with approximately 83% similarity for each group.

The clone Group 5 (Cluster II) contained the predominant, recovered clone from FW-003, which was only 75% identity with previously known genes, the identity values ranged from 59 to 100%. Almost 45% of the OTUs had ≥95% sequence identity with previously known genes, approximately 30% of the OTUs were 80–85% identical to previously known genes, and the remaining 25% were 70–80% identical to previously reported sequences (Fig. 4).

The nirS dendrogram could be divided into five clusters (I–V) and Cluster I contained a majority of the FRC clones as well as the predominant sequences for samples FW-300, -005, -010 and -015. The clone Group 1 in Cluster I accounted for over half of the entire library and had 95% identity with the nirS from Alcaligenes faecalis (β) and approximately 92% identity with the nirS of Psuedomonas stutzeri (γ). Clone Group 1 was dominated by recovered clones from low pH samples, whereas almost all recovered sequences in clone Group 2 were obtained from circum neutral pH samples. The nirS of Azospirillum brasilense clustered with clone Groups 3 and 4 with approximately 83% similarity for each group.

Table 3. Pair-wise similarity coefficients of nirK (top) and nirS (bottom) operational taxonomic units (OTUs) based on RFLP analysis.

<table>
<thead>
<tr>
<th>Well</th>
<th># of clones</th>
<th>OTU (%)</th>
<th>H′ (%)</th>
<th>1/D (%)</th>
<th>Evenness (%)</th>
<th>Richness (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW-300</td>
<td>143</td>
<td>16</td>
<td>2.33</td>
<td>3.30</td>
<td>0.58</td>
<td>22 ± 5</td>
</tr>
<tr>
<td>FW-003</td>
<td>229</td>
<td>12</td>
<td>0.70</td>
<td>1.20</td>
<td>0.20</td>
<td>37 ± 19</td>
</tr>
<tr>
<td>FW-005</td>
<td>185</td>
<td>12</td>
<td>0.78</td>
<td>1.23</td>
<td>0.22</td>
<td>18 ± 5</td>
</tr>
<tr>
<td>FW-010</td>
<td>134</td>
<td>12</td>
<td>2.13</td>
<td>2.90</td>
<td>0.60</td>
<td>18 ± 6</td>
</tr>
<tr>
<td>FW-015</td>
<td>140</td>
<td>20</td>
<td>3.10</td>
<td>5.11</td>
<td>0.71</td>
<td>71 ± 33</td>
</tr>
<tr>
<td>TPB-16</td>
<td>127</td>
<td>31</td>
<td>2.93</td>
<td>4.07</td>
<td>0.67</td>
<td>35 ± 9</td>
</tr>
<tr>
<td>FW-300</td>
<td>173</td>
<td>36</td>
<td>2.92</td>
<td>3.10</td>
<td>0.55</td>
<td>84 ± 18</td>
</tr>
<tr>
<td>FW-005</td>
<td>210</td>
<td>56</td>
<td>3.86</td>
<td>6.51</td>
<td>0.75</td>
<td>39 ± 3</td>
</tr>
<tr>
<td>FW-005</td>
<td>253</td>
<td>59</td>
<td>3.60</td>
<td>4.01</td>
<td>0.61</td>
<td>64 ± 8</td>
</tr>
<tr>
<td>FW-010</td>
<td>174</td>
<td>54</td>
<td>2.15</td>
<td>2.59</td>
<td>0.52</td>
<td>38 ± 14</td>
</tr>
<tr>
<td>FW-015</td>
<td>175</td>
<td>39</td>
<td>1.33</td>
<td>1.47</td>
<td>0.32</td>
<td>27 ± 7</td>
</tr>
<tr>
<td>TPB-16</td>
<td>177</td>
<td>37</td>
<td>1.91</td>
<td>2.07</td>
<td>0.45</td>
<td>28 ± 7</td>
</tr>
</tbody>
</table>

© 2003 Blackwell Publishing Ltd, Environmental Microbiology, 5, 13–24
nirK and nirS diversity in NO₃-contaminated groundwater

© 2003 Blackwell Publishing Ltd, Environmental Microbiology, 5, 13–24

Fig. 2. The clone distribution and overlap among sites for the nirS gene sequences. Each colour is a unique sequence the same colour shared between sites is the same sequence. Pie segments depicted as white represent unique sequences observed only at the respective site. The sequence names are denoted for predominant clones as well as the respective percentage for that site.

tical to the closest known reference (A. faecalis), and a majority (85%) of the recovered sequences were from FW-003 (e.g. circum neutral pH and high nitrate). The clone Groups 6 and 7 were almost exclusively observed from the FW-003 sample and Group 7 had at least 99% sequence similarity with the nirS from Pseudomonas aeruginosa (Fig. 4). The clone Group 8 (Cluster IV) and clone Group 9 (Cluster V) were not closely related to previously observed sequences and were predominantly obtained from the acidic sites FW-005 and FW-010 respectively. The clone Group 10 (Cluster IV) had the predominant clone from TPB-16 and the majority of recovered clones (75%) were from the similar sites, TPB-16 and FW-300. Also, Cluster V contained only one previously
known nir\textsubscript{S} sequence (\textit{R. eutropha}), a majority (95\%) of the recovered OTUs appeared to be novel sequences (<75\% nucleotide identity) and was predominated by sequences from circum neutral samples.

**Principal component analysis (PCA)**

The seven geochemical analytes, nitrate, uranium, pH, nickel, total organic carbon, dissolved oxygen (DO) and non-purgable organic carbon were used for PCA (Fig. 5). The background site (FW-300) and TPB-16 were distinctly different from the other sites and these two sites had the lowest nitrate levels. The well FW-005 had relatively moderate nitrate levels and appeared to be affected differently than the other low pH sites. The wells, FW-003, -010 and -015 were grouped and all had high nitrate levels. When the distribution of unique sequences and the geochemical measurements were simultaneously analysed with PCA, the samples displayed similar results as with the physical measurements alone (data not shown). For both nir\textsubscript{K} and nir\textsubscript{S}, FW-300, TPB-16 and FW-005 appeared to be affected differently, and FW-003, FW-010 and FW-015 were closely grouped.

However, when the OTU distributions from the samples were analysed with PCA different sample associations were observed. For the nir\textsubscript{K} library, site FW-015 did not associate with the other samples and the FW-300, FW-010, TPB-16, FW-005 and FW-003 samples had more similar OTU distributions (Fig. 6A). The sites, FW-003, TPB-16, FW-010 and FW-005 were more closely grouped.
away from FW-300. For the nirS library, FW-003 and TPB-16 were distinct from FW-005, FW-010, FW-015 and FW-300, and the background site appeared to be more similar to FW-010 and FW-015 (Fig. 6B).

Discussion

Polymerase chain reaction-based cloning approaches are commonly used to assess diversity and community structure and can be an informative tool for environmental studies. However, the abundance, dominance or diversity may not be completely epitomized by clone distribution, therefore, the measurements and indices are used for relative comparisons. The formation of chimeras, heteroduplexes and mutations can be intrinsic to PCR amplifi-

cation (Qiu et al., 2001), and protocols were followed to minimize PCR amplification-induced artifacts as described in the Experimental procedures section. Our previous study suggested that the chimeric and heteroduplex frequency was approximately 10% based on 16S rRNA genes (Zhou et al., 2002). Because similar protocols were used for these studies, we expect that PCR generated artifacts were not a significant problem.

Wells with varying geochemical characteristics were sampled from a field site with a single contamination source and the wells FW-005, FW-010 and FW-015 had low pH values and increased nitrate, FW-003 had circumneutral pH and high nitrate levels, and FW-300 and TPB-16 had circumneutral pH and relatively low nitrate levels. Approximately 130–230 clones were evaluated from each of the samples. Distinctive clones based on RFLP analysis were used for sequence comparisons, and RFLP analysis with a combination of tetrameric restriction endonucleases can be a sensitive method for clone differentiation. Sequence divergence may exist within RFLP groups, but is most likely not significant.

Previously reported phylogenetic relationships based on the 5S rDNA were highly similar with the type of nir gene for known microorganisms (Ohkubo et al., 1986), and recent work with amoA suggested that environmental sequences with less than 80% nucleotide identity were indicative of previously unobserved species (Purkhold et al., 2000). Such a relationship between denitrifiers and the nirK and nirS genes has not yet been elucidated, but the nirK and nirS genes within the α-, β- and γ-Proteobacteria subdivisions have approximately 75% or greater nucleotide sequence identity. In this study, we used this value as a threshold to evaluate whether the recovered sequences were considerably different.

The dominant nirK sequence for all sites might represent novel nitrite reductases distantly related to H. zavarzinii (α). Hyphomicrobium species are methylotrophic bacteria able to degrade C-1 compounds, and recently, Layton et al. (2000) detected Hyphomicrobium spp. as a dominant population in a municipal wastewater treatment system in Kingsport, TN. Because the same FRC nirK sequence predominated all sites under a wide range of geochemical conditions, the host microorganisms could play an important role in denitrification at FRC sites and not be significantly impacted by the contaminants.

The novel nirK clone Groups 2, 3 and 4 comprised almost 15% of the entire nirK clonal library. The novel clone Group 4 sequences were predominant all sites under a wide range of geochemical conditions, the host microorganisms could play an important role in denitrification at FRC sites and not be significantly impacted by the contaminants.

The novel nirK clone Groups 2, 3 and 4 comprised almost 15% of the entire nirK clonal library. The novel clone Group 4 sequences were predominantly from acidic samples and may represent presumptive nirK-containing denitrifiers that can survive in low pH environments. Also, the novel clones, C05-015–113 and F04-015–43, were predominantly from sites FW-005 and 015, and this result suggested that these sequences might represent previously uncultivated denitrifiers acclimated to such environments (low pH, high U and Ni). The copper-containing dissimilatory nitrite reductase was recently reported in ammonia-oxidizing, nitrifying bacteria (Casciotti and Ward, 2001), and the sequences, C03-10–14 and D04-15–16 (both obtained from low pH sites), clustered with the presumptive nirK gene of Nitrosomonas C-45. These two sequences represented 3% of the total nirK library and corresponded to 11% or 8% of the respective libraries.

The predominant nirS sequences from FW-003 (s-03–7; Group5) and TPB-16 (s-16–4; Group 10) appeared to be novel, and Groups 5 and 10 were predominated by sequences from the circum neutral sites. When only the OTU distribution was analysed with PCA, the results suggested that FW-003 and TPB-16 were affected differently than the other sites. Both FW-003 and TPB-16 are circum neutral sites with similar TOC and low nickel levels, but have different nitrate and uranium levels. These results suggested that the novel sequences represented by Groups 5 and 10 might be in response to nitrate and/or uranium, but other factors most likely are involved. These two novel sequence groups had approximately 73% sequence identity.

© 2003 Blackwell Publishing Ltd, Environmental Microbiology, 5, 13–24
Groups 8 and 9 (nirS) were almost exclusive to the acidic sites, FW-005 and FW-010, respectively, and might represent presumptive denitrifiers acclimated to low pH environments. However, low pH can have a negative impact on denitrification (Prieme et al., 2002), and the occurrence of these sequences might be the result of other physiological attributes. The identification of divergent gene sequences underscores the need for further isolation, identification, and characterization of the microorganisms with pertinent genotypic and phenotypic traits from sites of interest.

Hallin and Lindgren (1999) observed nirK sequences in all 13 samples of wastewater sludge tested, but only five samples were positive for nirS. On the other hand, Braker et al. (2000) identified nirK sequences in Washington state margin sediments only but observed nirS sequences in both Washington margin and Puget Sound sediments. In a more recent study, nirK sequences were amplified from both forested upland and wetland soils but nis was only observed in the marsh samples (Prieme et al., 2002). In our study, both nirK and nis sequences were detected in all groundwater samples tested, even though the contaminant levels differed drastically. However, the nirK and nis diversity appeared to be different within the same microbial communities.

Previous studies with marine sediments and terrestrial soils reported higher nis diversity than nirK (Braker et al., 2000; Prieme et al., 2002) and the FRC nis groundwater libraries were generally more diverse than the nirK. Interestingly, TPB-16 and FW-015 had the lowest nis diversity, but had the highest nirK diversity. Also, the sites FW-003 and FW-005 had the lowest nirK diversity but displayed the highest nis diversity. When the different diversity indices for nirK and nis sequences were compared from the same site, the two gene pools were inversely proportional ($r^2 = 0.88$; data not shown).

Increased nis diversity was noted in environments with relatively moderate levels of nitrate ($\sim 3$ mM and $16$ mM), and higher nirK diversity was observed in groundwater samples with extremes in nitrate levels ($< 0.5$ mM or $> 16$ mM). These results suggested that particular environmental conditions might alter the proportions of denitrifiers with a nirK or nis, and that the community dynamics for nirK gene microorganisms might affect the community structure of nis gene microorganisms and vice versa. Little is known regarding environmental impacts on nirK- and nis-dentifiers or communities, but oxygen sensitivity, kinetic characteristics and substrate requirements can vary between microorganisms as well as communities (Tiedje, 1988; Zumft, 1997; Cavigelli and Robertson, 2000). The apparent differences between and within the samples may represent unique properties of an active denitrifying community under respective conditions, but other physiological traits of the community most likely play a role. Additional sampling and characterization are needed to explore the possible biochemical and ecological associations.

The major difference between and among the sites appeared to be the nitrate levels based on PCA of geochemical measurements and a similar relationship was observed when OTU distribution was included. These results suggested that the nitrate levels might be a major factor on presumptive denitrifiers with a nirK and nis gene. However, the PCA of OTU distribution alone indicated different site relationships and these results indicated that OTU distribution was not always a sole function of nitrate levels. These data suggested that simple relationships were difficult to delineate from environmental parameters, ecological indices and sequence data, particularly when the datasets were combined and complexity increased. Also, microbial community structure is most likely affected by many different abiotic and biotic variables in a non-linear fashion.

The nirK FW-015 library had different RFLP patterns, a high occurrence of Group 4 sequences, and PCA did not group FW-015 with the other sites. For the nis library, the circum neutral sites, FW-003 and TPB-16, were not grouped with the other sites. The comparisons of the unique nis sequences indicated that Groups 5, 6 and 7 were phylogenetically distinct and appeared to predominant FW-003. The novel Group 8 (nis) sequences were a significant portion of only the FW-005 library and PCA suggested that FW-005 was affected differently than the other low pH samples. The nis Groups 5 and 8 sequences might represent unique denitrifiers acclimated to increased nitrate levels and low pH environments respectively.

In general, less nirK diversity was observed among the samples and the same sequence appeared too predominant every site. The high nitrate, low pH sites (-005, -010, -015) were predominated by group 1 sequences, but FW-015 was dominated to a lesser extent and also displayed more diversity despite low pH values. Although all samples were predominated by the same sequence, PCA distinguished sample FW-015 from the others based on unique sequences.

The same nis sequence predominated background and the acidic samples, irrespective of nitrate and DO levels. Perhaps, the low pH environment of the acidic wells has constrained the nis population in relation to nitrate levels in a similar fashion to a low-nitrate, increased-oxygen environment (background). The other circum neutral pH sites, FW-003 and TPB-16, appeared to be predominated by different, previously uncultivated nis denitrifiers and PCA distinguished these circum neutral pH sites from the low pH sites as well as background.

In summary, the results indicated that: (i) novel nirK and nis sequences were identified along a single contamina-
tion gradient (acidic to circum neutral pH and low, moderate and high nitrate levels), and, in some cases, similar sequences could be identified at sites with similar geochemistry; (ii) nirK and nirS community structure was affected differently for the five contaminated samples whereas diversity at the background site was similar for both genes; and (iii) nirK and nirS diversity indices were inversely proportional at the contaminated sites. Principal component analysis indicated that nitrate was a major factor, but sequence occurrence and distribution was not always easily explained in relation to nitrate, pH, or DO levels. Future work is needed to characterize the associations between environmental conditions and nirK and nirS communities and better understand biotic and abiotic affects on functional dynamics. We are currently investigating the use of functional gene microarrays (Wu et al., 2001) and neural network analysis tools, as well as the isolation of bacterial isolates with novel nir genes.

Experimental procedures

Sampling sites

The FRC site includes three areas of contaminated soil and groundwater and an uncontaminated background area that contains soils similar to those found in the contaminated areas. The site contained four unlined ponds that received approximately 10 million litres of liquid nitric acid and uranium bearing wastes per year for approximately 30 years until closure in 1984. The waste ponds contribute to both sediment and groundwater contamination with nitrate, uranium and heavy metals. The site is also contaminated with a variety of organic contaminants at varying levels and a full description can be found at the FRC website (http://www.esd.ornl.gov/nabirfrc). The source ponds were presumptively neutralized by gel electrophoresis plus mini-column preparation (Wizard DNA Clean-Up system, Promega, Madison, WI).

DNA extraction and purification

Groundwater samples (1–2 l) were collected and transported to the laboratory in amber glass bottles. Bacteria were harvested by centrifugation (10 000 g, 4°C for 30 min) and the cell pellet was resuspended in a lysis buffer and the cells disrupted with a previously described grinding method (Zhou et al., 1996). The DNA was extracted as previously described (Zhou et al., 1996; 1997) and the precipitated DNA was purified by gel electrophoresis plus mini-column preparation (Wizard DNA Clean-Up system, Promega, Madison, WI).

PCR amplification and cloning

The fragments of the nirK and nirS genes were amplified in a 9700 Thermal Cycler (Perkin-Elmer) with the redesigned primer pairs copper 583 F (5'-TCA TGG TGC TGC CCG GKG ACG G-3') and copper 909R (5'-GAA CTT GTT GGT KGC CCA GAC-3') for the nirK gene, and heme 832 F (5'-TCA CAC CCC GAG CCG CGC GT-3') and heme 1606R (5'-AGK CGT TGA ACT TGC CCG TCG G-3') for the nirS gene. The PCR reactions (20 µl) contained 2 µl 10× buffer (500 mM KCl, 100 mM Tris HCl pH 9.0 and 1% Triton X-100), 1.5 µl 25 mM MgCl₂, 0.2 µl 400 ng µl⁻¹ Bovine serum albumin (Boehringer Mannheim, Indianapolis, IN), 0.2 µl 25 mM dNTPs (USB, Cleveland, OH), 10 pmol each primer, 2.5 U Taq polymerase and 1 µl purified DNA (5–10 ng). To minimize PCR-induced artifacts, the optimal number of cycles was determined and five PCR reactions were combined before cloning as described previously (Qiu et al., 2001). The PCR parameters were as follows: 80°C for 30 s, 94°C for 2 min; 94°C for 30 s, 60°C for 1 min, 72°C for 1 min, 30 cycles; 72°C for 7 min. Polymerase chain reaction products were analysed on 1.5% (wt/vol) TAE agarose gels. The combined PCR products (326 bp and 774 bp, respectively) were separated by electrophoresis in a low-melting point agarose gel (0.8%), the appropriate band excised and denatured before being capped, but the efficacy of the treatment was not monitored.

Groundwater samples were collected from six wells at the FRC (Table 1). The wells FW-005 and FW-010, located in Area 3, are separated by 40 m. The wells FW-015 and FW-010, located in Area 2, are separated by 40 m. The cell pellet was resuspended in a lysis buffer and the cells disrupted with a previously described grinding method (Zhou et al., 1996). The DNA was extracted as previously described (Zhou et al., 1996; 1997) and the precipitated DNA was purified by gel electrophoresis plus mini-column preparation (Wizard DNA Clean-Up system, Promega, Madison, WI).

The combinations PCR products (326 bp and 774 bp, respectively) were separated by electrophoresis in a low-melting point agarose gel (0.8%), the appropriate band excised and the DNA extracted with a Wizard Prep Kit (Promega, Madison, WI) according to manufacturer’s instructions. Recovered DNA was resuspended in 6 µl ddH₂O, 2 µl was ligated with pCR2.1 vector from a TA-cloning kit and competent Escherichia coli cells were transformed according to the provided protocol (Invitrogen, San Diego, CA).

RFLP analysis

Approximately 200 white colonies from each sample were randomly selected and screened for nirK and nirS inserts, which were detected with the primers specific to the poly linker of the vector pCR™III as described previously (Qiu et al., 2001). Each single white colony was picked, resuspended in 60 µl 0.1 × TE buffer (1 mM Tris, 0.1 mM EDTA), boiled for 5 min at 100°C and then stored at −40°C. The inserts were amplified (20 µl reactions) with the TA primers specific for the pCR2.1 vector as described previously (Qiu et al., 2001). The inserts were visualized on a 1.5% TAE agarose gel stained with ethidium bromide and clones with the expected size were used for further analysis.

Amplified PCR products (6 µl) were digested with the tetrameric enzymes MspI and Rsal (Gibco-BRL, overnight at 37°C, 0.1 U each). Digested fragments were separated by electrophoresis (7 V cm⁻¹, 4 h) in 3.5% Metaphor agarose (BMA, Rockland, ME) gels with 10 µl of 10 mg l⁻¹ ethidium bromide in 1 × TBE buffer. The RFLP patterns were visualized with ultraviolet radiation and saved as TIFF images. The
RFLP patterns were analysed and clustered with the MOLECULAR ANALYST 1.6 software (Applied Math, Kortrijk, Belgium) using the unweighted pair group method of arithmetic averages and the Jaccard algorithm. The clusters were validated by comparison with the gel images.

**Sequence and phylogenetic analysis**

Unique nirK and nirS clones from each site were selected for sequence analysis based on differences in RFLP patterns and are designated as OTUs (operational taxonomic unit). The number of sequences determined for each site is listed in Table 2. Polymerase chain reaction products (100 μl) amplified with vector-specific primers were purified with the ARRAY™PCR Purification Kit (TeleChem International, Sunnyvale, CA) or treated with ExoSAP-IT™ (USB, Cleveland, OH) according to manufacturer instructions. The DNA sequences were determined with a BigDye Terminator kit (Applied Biosystem, Foster City, CA) using a 3700 DNA analyser (Perkin-Elmer, Wellesley, MA) according to the manufacturer instructions at a 5:1 dilution. The DNA sequences were assembled and edited using the SEQUENCER™ program (v.4.0, Gene Codes, Ann Arbor, MI).

The sequences obtained with the vector-specific primers were compared with nirK and nirS sequences from GenBank (March 2002). The sequences were aligned with CLUSTALW and alignments compared with reference sequences from the database (Thompson et al., 1994). Phylogenetic and molecular evolutionary analyses were conducted using MEGA version 2.1 (Kumar et al., 2001) and phylogenetic trees were constructed with distance matrices and the neighbor-joining method within MEGA. Trees constructed with maximum-likelihood and neighbor-joining methods were not significantly different. The nucleic acid sequence accession numbers in GenBank are as follows: AF548900-AF548940 and AF548942-AF548958 for nirK clones and AF548959-AF549061, AF549063-AF549065, and AF549066-AF549105 for nirS.

**Data analysis**

The diversity (Shannon-Wiener and Simpson’s index) and evenness (equitability) indices were calculated with RFLP data obtained from the clonal libraries using equations from Krebs (Pielou, 1969; Krebs, 1989; Brown and Bowman, 2001). The reciprocal of Simpson’s index ensures a better relationship between an increasing value of the index and an increased diversity (Magurran, 1988). The evenness index (E) measures the equitability of species abundance for a sample and a sample contains many clones with similar representation as E approaches a value of 1 (Krebs, 1989; Brown and Bowman, 2001).

Clone richness was estimated using the non-parametric Chao model (Chao, 1984) and gives a statistical prediction of the total number of different clones in a given sample. Similarity coefficients were calculated for each pair of samples using the following equation (Odum, 1971; Brown and Bowman, 2001): S = 2CA + B, where A and B are the number of RFLP patterns in libraries A and B, respectively and C is the number of shared patterns. Principal components analysis used the programs in the SYSTAT statistical computing package (v. 9.0, SPSS, Chicago, IL).

**Acknowledgements**

The authors thank Drs C. S. Criddle and C. E. Bagwell for helpful discussions. The authors would also like to thank B. L. Kinsall and K. A. Lowe for sample collection, as well as Dr P. M. Jardine, T. L. Melthorn and D. B. Watson for field sample analysis. This research was supported by The United States Department of Energy under the Natural and Accelerated Bioremediation Research Program of the Office of Biological and Environmental Research, Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for DOE under contract # DE-AC05-96OR22464.

**References**


Kumar, S., Tamura, K., Jakobsen, I.B., and Nei, M. (2001) MEGA2: Molecular Evolutionary Genetics Analysis Software. Arizona State University, Tempe, Arizona, USA.


Odum, E.P. (1971) *Principles and concepts pertaining to organization at the community level*. In *Fundamentals of...*


